Translation

Tuesday, 10 June 2014

Trigo Question: Edexcel 4PMO, 2012 May 17 Paper 1 Question 7 – Q and A

Question 7:                              cos(A +B) = cosA cosB – sinA sinB

a)      Express cos(2x + 45o) in the form M cos2x + N sin2x, where M and N are constants, giving the exact value of M and the exact value of N.                       (2)

b)      Solve, for 0o ≤ x ≤ 180o, the equation cos2x –sin2x = 1                                    (5)


The maximum value of cos2x –sin2x is k.

c)      Find the exact value of k.                                                                                  (2)

d)      Find the smallest positive value of x for which a maximum occurs.                      (3)

My Proposed Solutions

a)      Use:                 cos(A +B) = cosA cosB – sinA sinB
Therefore:         cos(2x + 45o) = cos2x cos45o – sin2x sin45o
[Use:                cos45o = 1/√2 = sin45o (trigo of convenient angle 45o)]
Therefore:         cos(2x + 45o) = (1/√2) cos2x – (1/√2) sin2x
                                                = (1/√2) cos2x + (-1/√2) sin2x
                                                ≡ M cos2x + N sin2x
Where, M = 1/√2 and N = -1/√2                                             (Answer)

b)      For 0o ≤ x ≤ 180o, solve cos2x –sin2x = 1.

cos2x –sin2x = 1
            x 1/√2:             (1/√2) cos2x – (1/√2) sin2x = 1/√2
Therefore:         cos(2x + 45o) = 1/√2
Imply:               (2x + 45o) = cos-1 (1/√2) (= Reference Angle 45o)
[Principle Angle Domain: 0o ≤ x ≤ 180o implies 45o ≤ (2x + 45o) ≤ 360o + 45o]
Therefore:         (2x + 45o) is in 1st qdrant (qd), 4th qd and 1st qd 1st co-terminal
1st qd:               2x + 45o = 45o;            2x = 0o;            x = 0o   (Answers)
4th qd:              2x + 45o = 360o -  45o; 2x = 270o;       x = 135o
5th qd:               2x + 45o = 360o +  45o; 2x = 360o;       x = 180o

c)      Max. value of cos2x – sin2x = k

x 1/√2:             (1/√2) cos2x – (1/√2) sin2x = k/√2
Imply:               cos(2x + 45o) = k/√2
Therefore:         k = (√2) cos(2x + 45o)
k maximum, when cos(2x + 45o) = 1; and, max. k = (√2)(1) = √2 (Answer)

d)      For principle angle domain: 45o ≤ (2x + 45o) ≤ 360o + 45o,
the maximum value occurs when cos(2x + 45o) = 1 = cos 360o.
(cos0o = 1 too but 0o  is outside the domain)
Therefore:         (2x + 45o) = 360o;        2x = 315o;        x = 157.5o        (Answer)

-----------------------------------------------------------------------------------------------------
Good luck to Ms Kim and J Min!

No comments: