Translation

Friday, 6 June 2014

Solve 9 sin2 Ө – 9 sin Ө = 11

Last night at Mont Kiara, the above question was forwarded to me to solve.

Anyway, you will note from my proposed solutions below that different domains for Ө will mean different answers. 

For examples:

* For 0 ≤ Ө ≤ π radians, no value of Ө can satisfy the equation: 9 sin2 Ө – 9 sin Ө = 11;

* For 0 ≤ Ө ≤ 2π radians, two values Ө satisfy the equation

My Proposed Solutions
                                  9 sin2 Ө – 9 sin Ө = 11
-11:                   9 sin2 Ө – 9 sin Ө – 11 = 0
                        (compare: ax2 + bx + c = 0)
where:                   a = 9, b = -9 and c = -11
therefore, roots:     [α = (-b + √(b2 – 4ac))/2a; or β = (-b - √(b2 – 4ac))/2a]
imply:          sin Ө = -(-9) - √(-9)2 – 4(9)(-11))/(2x9) = - 0.713351648; or,
                    sin Ө = -(-9) + √(-9)2 – 4(9)(-11))/(2x9) =  1.713351648;

For 0 ≤ Ө ≤ 2π radians:
                    sin Ө = - 0.713351648 implies Ө in 3rd or 4th quadrants
                          Ө = π + sin-1 (0.713351648) or 2π - sin-1 (0.713351648)
                          Ө = 3.935861836 (3rd Qd) or 5.488916105 (4th Qd)
                          Ө = 3.94 or 5.49 rad (both to 3 sf)

But for 0 ≤ Ө ≤ π radians (1st and 2nd quadrants):
                    For all values of Ө, sin Ө must be +ve.
                    Therefore, sin Ө ≠ - 0.713351648.

Also for all values of Ө in any quadrant, sin Ө ≠ 1.713351648 because 1 ≥  sin Ө ≥ -1.

So remember: If you want to solve a trigonometric equation, you must know or be given the domain because the answers depend on the domain for Ө! In fact, Q 10(e) of Edexcel Further Pure Maths (4PMO) Yr 2013 May Paper 1 amply demonstrates this!!


No comments: