Translation

Wednesday, 30 October 2013

Solutions of Trigonometric Equations

For a Given Interval, Solve the Trigonometric Equations

Solutions of Trigonometric Equations for a Given Interval

Edexcel Syllabus stipulates:

Students should be able to solve equations such as:

1)    sin (x – π/2) = ¾,  for 0 < x < 2π

2)    cos (x + 30o) = ½, for -180o < x < 180o

3)    tan 2x = 1,  for 90o < x < 270o

4)    6 cos2 xo  + sin xo – 5 = 0, for 0  ≤ x < 360

5)    sin2 (x + π/6) = ½,  for –π ≤ x < π.

6)   Past Year Question: Edexcel Pure Maths 7362/02, Q8 (15 May 2008)

Solve, to 3 significant figures, for 0 ≤ Ө ≤ π,

(a)  (4 sin Ө – 1)(2 sin Ө + 5) = 0                                                       (3)
(b)  tan(2Ө – π/3) = 2.4                                                                       (4)
(c)  9 sin2 Ө – 9 cos Ө = 11                                                                (5)

7) Solve,   4 sin Ө cos Ө – 10 sin Ө - 2 cos Ө + 5 = 0, for - 90 ≤ Ө ≤ 90 (in degrees)
     
-----------------------------------------------------------------------------------------------------

1)      Solve sin (x – π/2) = ¾,  for 0 < x < 2π

To solve the trigo. equation is to find the value(s) of x for the given interval or domain: 0 < x < 2π
           
            To find x, you have to use the given relationship: sin (x – π/2) = ¾

Based on this relationship:

·           The Reference Angle, R = sin-1 (3/4)

·           The Principle Angle P (x – π/2) is in
o    The Principle Domain: –π/2  < P < 2π – π/2
o    1st quadrant (where, P = R): (x – π/2) = sin-1 (3/4),
o    2nd quadrant (where P = π – R): (x – π/2) = π - sin-1 (3/4),

Hence,
1st quadrant answer:
(x – π/2) = sin-1 (3/4)
            x = π/2 + sin-1 (3/4)
            x = 2.418 858 406
            x = 2.42 (to 3 s.f.)
                       
                        2nd  quadrant answer:
                        (x – π/2) = π - sin-1 (3/4)
                                    x = π + π/2 - sin-1 (3/4)
                                    x = 3.864 326 901
                                    x = 3.86 (to 3 s.f.)


2)      Solve cos (x + 30o) = ½, for -180o < x < 180o

Let:      R be the Reference Angle: R = cos-1 (1/2)

P be (x + 30o).

Therefore:
Domain for P: -150o < P < 210o
(since, -180o + 30o < (x + 30o) or P < 180o+ 30o)

P (or, x + 30o) must be in 1st Qd or 4th Qd

1st Qd: P = R = cos-1 (1/2) = 60o
            x + 30o = 60o
                        x = 30o

4th Qd:             P = -60o
              x + 30o = -60o
                        x = -90o


6)    Past Year Question: Edexcel Pure Maths 7362/02, Q8 (15 May 2008)

Solve, to 3 significant figures, for 0 ≤ Ө ≤ π,

(a)  (4 sin Ө – 1)(2 sin Ө + 5) = 0                                                       (3)
(b)  tan(2Ө – π/3) = 2.4                                                                       (4)
(c)  9 sin2 Ө – 9 cos Ө = 11                                                                (5)

Solutions:
(a)    (4 sin Ө – 1)(2 sin Ө + 5) = 0

(4 sin Ө – 1) = 0;                          or, (2 sin Ө + 5) = 0
sin Ө = ¼                                     or, sin Ө = -5/2
      Ө = sin-1 (1/4)                        but, sin must be ≤ 1
      Ө = 0.252 680 255                 so, (2 sin Ө + 5) ≠ 0
     
      Ө = 0.253 (to 3 s.f.)

(b)    tan(2Ө – π/3) = 2.4

Reference Angle R = tan-1 (2.4) 
                              ( = 1.176005207 rad. - but NO need to get. this value early)

Let P be (2Ө – π/3). Therefore,
Domain for P is: – π/3 ≤ P ≤ 2π – π/3
                      or, – π/3 ≤ P ≤ 5π/3
                    
For P’s domain, since tan = +ve value,
P must be in 1st Quadrant;           or, 3rd Quadrant:
P = R = tan-1 (2.4);                       or, P = π + R = π + tan-1 (2.4)
(2Ө – π/3) = tan-1 (2.4)                or, (2Ө – π/3) = π + tan-1 (2.4)
 2Ө = π/3 + tan-1 (2.4)                 or, 2Ө = 4π/3 + tan-1 (2.4)
   Ө = [π/3 + tan-1 (2.4)] ÷ 2        or,  Ө = [4π/3 + tan-1 (2.4)] ÷ 2                             
   Ө = 1.111 601 379                    or 2.682 397 706
 
  Ө = 1.11 or 2.68 (to 3 s.f.)

(c)       9 sin2 Ө – 9 cos Ө = 11
9 (1 – cos2 Ө) – 9 cos Ө = 11 ….(using: cos2 Ө + sin2 Ө = 1)
9 –9 cos2 Ө – 9 cos Ө = 11
9 - 11 – 9 cos2 Ө – 9 cos Ө = 0
X (-1): 9 cos2 Ө + 9 cos Ө + 2 = 0
(3 cos Ө + 1)( 3 cos Ө +2) = 0
(3 cos Ө + 1) = 0                                   or, (3 cos Ө + 2) = 0
cos Ө = - (1/3)                                       or, cos Ө = - (2/3)

Given the domain for Ө:  0 ≤ Ө ≤ π, and cos Ө = -ve values
Ө values must be in the 2nd Qd.

Hence, Ө = π – cos-1 (1/3)        or, = π – cos-1 (2/3)
          Ө = 1.910 633 236           or, = 2.300 523 983

Ө = 1.91            or, 2.30 (to 3 s.f.)



7) Solve,  4 sin Ө cos Ө – 10  sinӨ - 2 cos Ө + 5 = 0, for - 90 ≤ Ө ≤ 90 (in degrees)

            Factorise:         2 cos Ө (2 sin Ө – 1) – 5 (2 sinӨ – 1) = 0
                                    (2 sinӨ – 1)( 2 cosӨ – 5) = 0

            Imply:               (2 sinӨ – 1) = 0            or         (2 cosӨ – 5) = 0

                                    sin Ө = ½                      or         cos Ө = 5/2

                                    Ө = sin-1(1/2)               but       cos Ө ≤ 1

                                    Ө = 30o                        so,        (2 cos Ө – 5) ≠ 0

-------------------------------------------------------------------------------------------

Your Homework:

3)    Solve, tan 2x = 1,  for 90o < x < 270o

4)    Solve, 6 cos2 xo  + sin xo – 5 = 0, for 0  ≤ x < 360

5)    Solve, sin2 (x + π/6) = ½,  for –π ≤ x < π.   

---------------------------------------------------------------------------------------

SPM 2013 Paper 2 Q 4(b) on Solutions of Trigonometric Equation:

4.         (a) Prove that tan x sin 2x = 1 – cos 2x             (2)

            (b) Hence, solve the equation
tan x sin 2x = ¼, for 0o ≤ x ≤ 360o                    (4)

Proposed Solutions

4          (a) To prove: tan x sin 2x = 1 – cos 2x

                        LHS = tan x sin 2x

                        Use identities:
                        tan x = sin x / cos x; and
                        sin 2x = 2 sin x cos x

                        LHS = (sin x / cos x)( 2 sin x cos x) = 2 sin2 x

                        Use identities:
cos 2x = 1 - 2 sin2 x; or,
2 sin2x = 1 – cos 2x

Therefore,
LHS = 2 sin2x = 1 – cos 2x = RHS (Proven)

            (b) Hence, tan x sin 2x = ¼, for 0o ≤ x ≤ 360o

                        Imply: 1 – cos 2x = ¼, for 0o ≤ 2x ≤ 720o
                                    cos 2x = 1 – ¼ = ¾ (+ve)
                       
Thus, for domain of 2x: 0o ≤ 2x ≤ 720o, 2xo must be in

·        1st Quadrant:

P1 = 2xo = Reference Angle (R) = cos-1 (3/4)
xo = (1/2)[cos-1 (3/4)] = 20.70481106…o
x = 20.7 (to 1 dp); or

(1st Qd 1st co-terminal angle)
2x = 360(1) + P1 = 360 + cos-1 (3/4)
x = (1/2)[360 + cos-1 (3/4)] =  200.7048111…
   = 200.7 (to 1 dp)

·        4th Quadrant:

P2 = 2xo = 360o – R = 360o – cos-1 (3/4)
xo = (1/2)[ 360o  - cos-1 (3/4)] = 159.2951889…o
x = 159.3 (to 1 dp); or

(4th Qd 1st co-terminal angle)


2xo = 360o + P2 = 360o + [360o – cos-1 (3/4)]
xo = (1/2)[720o – cos-1 (3/4)]
x = 339.2951889

x = 339.3 (to 1 dp)

                          ---------------------------------------------------------------------

No comments: