For a Given Interval, Solve the Trigonometric Equations
Solutions of
Trigonometric Equations for a Given Interval
Edexcel Syllabus stipulates:
“Students
should be able to solve equations such as:
1)
sin (x – π/2) = ¾, for 0
< x < 2π
2)
cos (x + 30o) = ½, for -180o < x < 180o
3)
tan 2x = 1, for 90o < x < 270o
4)
6 cos2 xo + sin xo – 5 = 0, for 0 ≤ x < 360
5)
sin2 (x
+ π/6) = ½, for –π ≤ x < π.
6) Past Year Question: Edexcel Pure Maths 7362/02, Q8 (15 May 2008)
7) Solve, 4 sin Ө cos Ө – 10 sin Ө - 2 cos Ө + 5 = 0, for - 90 ≤ Ө ≤ 90 (in degrees)
6) Past Year Question: Edexcel Pure Maths 7362/02, Q8 (15 May 2008)
Solve, to 3 significant figures, for 0 ≤ Ө ≤ π,
(a) (4 sin Ө – 1)(2 sin Ө + 5) = 0 (3)
(b) tan(2Ө – π/3) = 2.4 (4)
(c) 9 sin2 Ө – 9 cos Ө = 11 (5)
7) Solve, 4 sin Ө cos Ө – 10 sin Ө - 2 cos Ө + 5 = 0, for - 90 ≤ Ө ≤ 90 (in degrees)
-----------------------------------------------------------------------------------------------------
1)
Solve sin (x – π/2) = ¾,
for 0 < x < 2π
To
solve the trigo. equation is to find the value(s) of x for the given interval
or domain: 0 < x < 2π
To find x, you have to use the given
relationship: sin (x – π/2) = ¾
Based
on this relationship:
·
The Reference Angle, R = sin-1 (3/4)
·
The Principle Angle P (x – π/2) is in
o
The Principle Domain: –π/2
< P < 2π – π/2
o
1st quadrant (where, P = R): (x – π/2) = sin-1
(3/4),
o 2nd
quadrant (where P = π – R): (x – π/2) = π - sin-1 (3/4),
Hence,
1st quadrant answer:
(x – π/2) = sin-1 (3/4)
x = π/2 + sin-1
(3/4)
x = 2.418 858
406
x = 2.42 (to 3 s.f.)
2nd quadrant answer:
(x
– π/2) = π - sin-1 (3/4)
x = π + π/2
- sin-1 (3/4)
x = 3.864
326 901
x = 3.86 (to 3 s.f.)
2)
Solve cos (x + 30o) = ½, for -180o < x < 180o
Let: R be the
Reference Angle: R = cos-1 (1/2)
P be (x + 30o).
Therefore:
Domain for P: -150o
< P < 210o
(since, -180o +
30o < (x + 30o) or P < 180o+ 30o)
P (or, x + 30o) must be in 1st Qd or 4th
Qd
1st Qd: P = R = cos-1 (1/2) = 60o
x + 30o =
60o
x = 30o
4th Qd: P
= -60o
x + 30o = -60o
x = -90o
6)
Past
Year Question: Edexcel Pure Maths 7362/02, Q8 (15 May 2008)
Solve,
to 3 significant figures, for 0 ≤ Ө ≤ π,
(a) (4 sin
Ө – 1)(2 sin Ө + 5) = 0 (3)
(b) tan(2Ө
– π/3) = 2.4 (4)
(c) 9 sin2
Ө – 9 cos Ө = 11 (5)
Solutions:
(a) (4 sin
Ө – 1)(2 sin Ө + 5) = 0
(4 sin Ө – 1) = 0; or, (2 sin Ө + 5) = 0
sin Ө = ¼ or, sin Ө =
-5/2
Ө = sin-1 (1/4) but, sin must be
≤ 1
Ө = 0.252 680 255 so, (2 sin Ө + 5) ≠ 0
Ө
= 0.253 (to 3 s.f.)
(b) tan(2Ө
– π/3) = 2.4
Reference Angle R = tan-1
(2.4)
( = 1.176005207 rad. - but NO need to get. this value early)
( = 1.176005207 rad. - but NO need to get. this value early)
Let P be (2Ө – π/3). Therefore,
Domain for P is: – π/3 ≤ P ≤ 2π
– π/3
or, – π/3
≤ P ≤ 5π/3
For P’s domain, since tan = +ve
value,
P must be in 1st Quadrant; or, 3rd Quadrant:
P = R = tan-1 (2.4); or, P = π + R = π + tan-1
(2.4)
(2Ө – π/3) = tan-1
(2.4) or, (2Ө – π/3) = π +
tan-1 (2.4)
2Ө = π/3 + tan-1 (2.4) or, 2Ө = 4π/3 + tan-1
(2.4)
Ө = [π/3 + tan-1 (2.4)] ÷ 2 or,
Ө = [4π/3 + tan-1 (2.4)] ÷ 2
Ө = 1.111 601 379 or 2.682 397 706
Ө =
1.11 or 2.68 (to 3 s.f.)
(c) 9 sin2
Ө – 9 cos Ө = 11
9 (1 – cos2 Ө) – 9
cos Ө = 11 ….(using: cos2 Ө + sin2 Ө = 1)
9 –9 cos2 Ө – 9 cos
Ө = 11
9 - 11 – 9 cos2 Ө –
9 cos Ө = 0
X (-1): 9 cos2 Ө + 9
cos Ө + 2 = 0
(3 cos Ө + 1)( 3 cos Ө +2) = 0
(3 cos Ө + 1) = 0 or, (3 cos Ө
+ 2) = 0
cos Ө = - (1/3) or, cos Ө = - (2/3)
Given the domain for Ө: 0 ≤ Ө ≤ π, and cos Ө = -ve values
Ө values must be in the 2nd
Qd.
Hence, Ө = π – cos-1
(1/3) or, = π – cos-1
(2/3)
Ө = 1.910 633 236 or, = 2.300 523 983
Ө =
1.91 or, 2.30 (to 3 s.f.)
7) Solve, 4 sin Ө cos Ө – 10 sinӨ - 2 cos Ө + 5 = 0, for - 90 ≤ Ө ≤ 90 (in degrees)
Factorise: 2 cos Ө (2 sin Ө – 1) – 5 (2 sinӨ – 1) = 0
(2 sinӨ – 1)( 2 cosӨ – 5) = 0
Imply: (2 sinӨ – 1) = 0 or (2 cosӨ – 5) = 0
sin Ө = ½ or cos Ө = 5/2
Ө = sin-1(1/2) but cos Ө ≤ 1
Ө = 30o so, (2 cos Ө – 5) ≠ 0
-------------------------------------------------------------------------------------------
Your Homework:
3)
Solve, tan 2x = 1, for 90o < x < 270o
4)
Solve, 6 cos2 xo + sin xo – 5 = 0, for 0 ≤ x < 360
---------------------------------------------------------------------------------------
SPM 2013 Paper 2 Q
4(b) on Solutions of Trigonometric Equation:
4. (a) Prove
that tan x sin 2x = 1 – cos 2x (2)
(b) Hence,
solve the equation
tan x sin 2x =
¼, for 0o ≤ x ≤ 360o (4)
Proposed Solutions
4 (a) To
prove: tan x sin 2x = 1 – cos 2x
LHS
= tan x sin 2x
Use
identities:
tan
x = sin x / cos x; and
sin
2x = 2 sin x cos x
LHS
= (sin x / cos x)( 2 sin x cos x) = 2 sin2 x
Use
identities:
cos 2x = 1 - 2
sin2 x; or,
2 sin2x
= 1 – cos 2x
Therefore,
LHS = 2 sin2x = 1 – cos 2x =
RHS (Proven)
(b) Hence, tan
x sin 2x = ¼, for 0o ≤ x ≤ 360o
Imply:
1 – cos 2x = ¼, for 0o ≤ 2x ≤ 720o
cos
2x = 1 – ¼ = ¾ (+ve)
Thus, for domain
of 2x: 0o ≤ 2x ≤ 720o, 2xo must be in
·
1st Quadrant:
P1 =
2xo = Reference Angle (R) = cos-1 (3/4)
xo = (1/2)[cos-1 (3/4)] = 20.70481106…o
x = 20.7 (to 1 dp); or
(1st Qd 1st
co-terminal angle)
2x = 360(1) + P1 = 360 + cos-1 (3/4)
x = (1/2)[360 + cos-1 (3/4)] = 200.7048111…
= 200.7 (to 1 dp)
·
4th Quadrant:
P2 = 2xo = 360o – R = 360o – cos-1
(3/4)
xo = (1/2)[ 360o - cos-1 (3/4)] = 159.2951889…o
x = 159.3 (to 1 dp); or
(4th Qd 1st
co-terminal angle)
2xo = 360o + P2 = 360o + [360o
– cos-1 (3/4)]
xo = (1/2)[720o – cos-1 (3/4)]
x = 339.2951889
x = 339.3 (to 1 dp)
---------------------------------------------------------------------
No comments:
Post a Comment