Translation

Tuesday, 10 June 2014

Trigo Question: Edexcel 4PMO, 2012 May 17 Paper 1 Question 7 – Q and A

Question 7:                              cos(A +B) = cosA cosB – sinA sinB

a)      Express cos(2x + 45o) in the form M cos2x + N sin2x, where M and N are constants, giving the exact value of M and the exact value of N.                       (2)

b)      Solve, for 0o ≤ x ≤ 180o, the equation cos2x –sin2x = 1                                    (5)


The maximum value of cos2x –sin2x is k.

c)      Find the exact value of k.                                                                                  (2)

d)      Find the smallest positive value of x for which a maximum occurs.                      (3)

My Proposed Solutions

a)      Use:                 cos(A +B) = cosA cosB – sinA sinB
Therefore:         cos(2x + 45o) = cos2x cos45o – sin2x sin45o
[Use:                cos45o = 1/√2 = sin45o (trigo of convenient angle 45o)]
Therefore:         cos(2x + 45o) = (1/√2) cos2x – (1/√2) sin2x
                                                = (1/√2) cos2x + (-1/√2) sin2x
                                                ≡ M cos2x + N sin2x
Where, M = 1/√2 and N = -1/√2                                             (Answer)

b)      For 0o ≤ x ≤ 180o, solve cos2x –sin2x = 1.

cos2x –sin2x = 1
            x 1/√2:             (1/√2) cos2x – (1/√2) sin2x = 1/√2
Therefore:         cos(2x + 45o) = 1/√2
Imply:               (2x + 45o) = cos-1 (1/√2) (= Reference Angle 45o)
[Principle Angle Domain: 0o ≤ x ≤ 180o implies 45o ≤ (2x + 45o) ≤ 360o + 45o]
Therefore:         (2x + 45o) is in 1st qdrant (qd), 4th qd and 1st qd 1st co-terminal
1st qd:               2x + 45o = 45o;            2x = 0o;            x = 0o   (Answers)
4th qd:              2x + 45o = 360o -  45o; 2x = 270o;       x = 135o
5th qd:               2x + 45o = 360o +  45o; 2x = 360o;       x = 180o

c)      Max. value of cos2x – sin2x = k

x 1/√2:             (1/√2) cos2x – (1/√2) sin2x = k/√2
Imply:               cos(2x + 45o) = k/√2
Therefore:         k = (√2) cos(2x + 45o)
k maximum, when cos(2x + 45o) = 1; and, max. k = (√2)(1) = √2 (Answer)

d)      For principle angle domain: 45o ≤ (2x + 45o) ≤ 360o + 45o,
the maximum value occurs when cos(2x + 45o) = 1 = cos 360o.
(cos0o = 1 too but 0o  is outside the domain)
Therefore:         (2x + 45o) = 360o;        2x = 315o;        x = 157.5o        (Answer)

-----------------------------------------------------------------------------------------------------
Good luck to Ms Kim and J Min!

Friday, 6 June 2014

Solve 9 sin2 Ө – 9 sin Ө = 11

Last night at Mont Kiara, the above question was forwarded to me to solve.

Anyway, you will note from my proposed solutions below that different domains for Ө will mean different answers. 

For examples:

* For 0 ≤ Ө ≤ π radians, no value of Ө can satisfy the equation: 9 sin2 Ө – 9 sin Ө = 11;

* For 0 ≤ Ө ≤ 2π radians, two values Ө satisfy the equation

My Proposed Solutions
                                  9 sin2 Ө – 9 sin Ө = 11
-11:                   9 sin2 Ө – 9 sin Ө – 11 = 0
                        (compare: ax2 + bx + c = 0)
where:                   a = 9, b = -9 and c = -11
therefore, roots:     [α = (-b + √(b2 – 4ac))/2a; or β = (-b - √(b2 – 4ac))/2a]
imply:          sin Ө = -(-9) - √(-9)2 – 4(9)(-11))/(2x9) = - 0.713351648; or,
                    sin Ө = -(-9) + √(-9)2 – 4(9)(-11))/(2x9) =  1.713351648;

For 0 ≤ Ө ≤ 2π radians:
                    sin Ө = - 0.713351648 implies Ө in 3rd or 4th quadrants
                          Ө = π + sin-1 (0.713351648) or 2π - sin-1 (0.713351648)
                          Ө = 3.935861836 (3rd Qd) or 5.488916105 (4th Qd)
                          Ө = 3.94 or 5.49 rad (both to 3 sf)

But for 0 ≤ Ө ≤ π radians (1st and 2nd quadrants):
                    For all values of Ө, sin Ө must be +ve.
                    Therefore, sin Ө ≠ - 0.713351648.

Also for all values of Ө in any quadrant, sin Ө ≠ 1.713351648 because 1 ≥  sin Ө ≥ -1.

So remember: If you want to solve a trigonometric equation, you must know or be given the domain because the answers depend on the domain for Ө! In fact, Q 10(e) of Edexcel Further Pure Maths (4PMO) Yr 2013 May Paper 1 amply demonstrates this!!


Tuesday, 3 June 2014

Brain Teaser 6: Differentiate y = Ae^2x + Be^-x, where x ≥ 0,…

A curve has equation y = Ae2x + Be-x, where x ≥ 0. At the point where x = 0, y = 50 and dy/dx = -20.

i)             Show that A = 10 and find the value of B.                                             (5)
ii)           Using the values of A and B found in part (i), find the coordinates of the stationary point of the curve.                                                                 (4)
{My additional question: Express the exact values of the coordinates of this stationary point as     (C ln 2, D(2)(2/3) ) and show that C = 1/3 and D = 30)
iii)          Determine the nature of the stationary point, giving a reason for your answer.     (2)

-------------------------------------------------------------------------------------------------------
In an earlier post, I have shown that eln 2 = 2, 10lg 3 = 3 and generally b^logb x = x. My additional question in part (ii) may require the use of this knowledge in order to get the exact value of the y-coordinate of the stationary point mentioned therein.

(Background to this Q: In the course of preparing a student to sit for her IGCSE Cambridge Add-Maths 0606 next Tuesday (10/06/2014), I came across the above Q as one of the past-year questions on "Calculus". After teaching her how to get the answers, I additionally asked her to get the exact values of the coordinates of the stationary point instead of just (0.231, 47.6). Thus, I have added an additional question to part (ii). :) )

-------------------------------------------------------------------------------------------------------
Answers:
i)                    A = 10; B = 40
ii)                   Stationary point = (0.231, 47.6) [or, ((1/3)ln 2, 30(2)(2/3)); C = 1/3: D=30]
iii)                 d2y/dx2 = 40e2x + 40e-x = +ve for all values of x – thus, minimum point.


Working leading to the answers will be posted in a week or so (please see below on "My Proposed Solutions"). You may post yours by way of comments if this question is of interest to you too. J

(Posted on 3/06/2014 from PJ SS2 Starbucks)

--------------------------------------------------------------------------------------------------------
My Proposed Solutions:

(i)             Given :    y = Ae2x + Be-x, where x ≥ 0
              At x = 0, y = 50 and dy/dx = -20

At x = 0, y = 50, therefore:          50 = Aeo + Beo
                                                   50 = A + B          ~~~ Eqn (1)
At x = 0, dy/dx = -20, therefore:  dy/dx = 2Ae2x – Be-x
                                                   -20  =  2Ae2(0) – Be-(0)
                                                   -20 = 2A – B      ~~~ Eqn (2)
Eqn (1) + Eqn (2):                       3A = 30,          hence, A = 10 (Shown)
Use Eqn (1):                               50 = 10 + B,    hence, B = 40 (Answer)

(ii)           Since,                 A = 10 and b = 40
therefore:            dy/dx = 2Ae2x – Be-x = 20e2x – 40e-x
At stationary pt, dy/dx = 0
therefore:            0 = 20e2x – 40e-x
x (ex):                  0 = 20e2x(ex) – 40e-x(ex)
                           0 = 20e3x – 40eo
                           0 = 20e3x – 40
                           e3x = 40/20 = 2
ln both sides:       3x = ln 2.         Therefore,        x = (1/3)(ln 2) ~~ exact value
                                                                           x = 0.231 (3 sf) ~~ (Answer)
Put x = (1/3)(ln 2) into:   y = 10e2x + 40e-x
therefore,                        y = 10e2(1/3)(ln 2) + 40e-(1/3)(ln 2)
                                       y = 10e(ln 2^(2/3)) + 40e (ln 2^(-1/3))
[Use ln ex = x:                 y = 10(2(2/3)) + 40(2(-1/3))]
All in terms of 2(2/3):        y = 10(2(2/3)) + 40(2(-1/3))(2/2)
                                       y = 10(2(2/3)) + [40(2(-1/3))(2)]÷2
                                       y = 10(2(2/3)) + [40(2(1-(1/3)))] ÷2
                                       y = 10(2(2/3)) + 20(2(2/3)) = 30(2(2/3))      ~~ exact value
                                       y = 47.6 (to 3 sf)               ~~ (Answer)                                       

(iii)          d2y/dx2 = 40e2x + 40e-x = +ve value for all x ≥ 0
So, stationary pt is minimum.                                ~~ (Answer)


Please drop your comments if you have any view to express on the above. Have fun!

(Posted on 18/06/2014 from PJ SS2 Starbucks)