Question 7: cos(A
+B) = cosA cosB – sinA sinB
a)
Express cos(2x + 45o) in the form M cos2x + N sin2x, where M and N are
constants, giving the exact value of M
and the exact value of N. (2)
b)
Solve, for 0o ≤ x ≤ 180o, the
equation cos2x –sin2x = 1 (5)
The maximum value of cos2x –sin2x is k.
c)
Find the exact value of k. (2)
d)
Find the smallest positive value of x for which a
maximum occurs. (3)
My Proposed
Solutions
a)
Use: cos(A
+B) = cosA cosB – sinA sinB
Therefore: cos(2x
+ 45o) = cos2x cos45o – sin2x sin45o
[Use: cos45o
= 1/√2 = sin45o (trigo of convenient angle 45o)]
Therefore: cos(2x
+ 45o) = (1/√2) cos2x – (1/√2) sin2x
=
(1/√2) cos2x + (-1/√2) sin2x
≡
M cos2x + N sin2x
Where, M
= 1/√2 and N = -1/√2 (Answer)
b)
For 0o ≤ x ≤ 180o, solve cos2x –sin2x
= 1.
cos2x –sin2x = 1
x 1/√2: (1/√2) cos2x – (1/√2) sin2x = 1/√2
Therefore: cos(2x + 45o)
= 1/√2
Imply: (2x + 45o)
= cos-1 (1/√2) (= Reference Angle 45o)
[Principle Angle Domain: 0o ≤ x ≤ 180o implies 45o
≤ (2x + 45o) ≤ 360o + 45o]
Therefore: (2x + 45o)
is in 1st qdrant (qd), 4th qd and 1st qd 1st
co-terminal
1st qd: 2x
+ 45o = 45o; 2x
= 0o; x = 0o (Answers)
4th qd: 2x + 45o
= 360o - 45o; 2x =
270o; x = 135o
5th qd: 2x
+ 45o = 360o + 45o;
2x = 360o; x = 180o
c)
Max. value of cos2x – sin2x = k
x 1/√2: (1/√2)
cos2x – (1/√2) sin2x = k/√2
Imply: cos(2x
+ 45o) = k/√2
Therefore: k
= (√2) cos(2x + 45o)
k maximum, when cos(2x + 45o) =
1; and, max. k = (√2)(1) = √2
(Answer)
d)
For principle angle domain: 45o ≤ (2x + 45o)
≤ 360o + 45o,
the maximum value occurs when cos(2x
+ 45o) = 1 = cos 360o.
(cos0o = 1 too but 0o is outside the domain)
Therefore: (2x
+ 45o) = 360o; 2x
= 315o; x = 157.5o (Answer)-----------------------------------------------------------------------------------------------------
Good luck to Ms Kim and J Min!