Translation

Showing posts with label trigonometric addition formula. Show all posts
Showing posts with label trigonometric addition formula. Show all posts

Monday, 18 November 2013

Trigonometric Equations Involving Addition Formula

Solving Trigonometric Equations Involving Addition Formula

 Q1) Using cos(A + B) ≡ cos A cos B – sin A sin B,

(a)    show that
(i)    sin2 Ө = (1/2)(1 – cos 2Ө),
(ii)   cos2 Ө = (1/2)(cos 2Ө + 1)                                                            (4)

f(Ө) = 1 + 10 sin2 Ө - 16 sin4 Ө .

(b)   Show that f(Ө) = 3 cos 2Ө – 2 cos 4Ө.                                               (4)

(c)    Solve the equation

1 + 10 sin2 Өo - 16 sin4 Өo + 2 cos 4Өo = 0.25, for 0 ≤ Ө ≤ 180

             giving your solutions to 1 decimal place.                                       (4)  

--------------------------------------------------------------------------------

Possible Solutions:

Given: cos (A + B) ≡ cos A cos B – sin A sin B            …Eqn (1)

a)      To show:
(i)                  sin2 Ө = (1/2)(1 – cos 2Ө)                    …Eqn (2)

RHS = (1/2)(1 – cos 2Ө) = (1/2)[1 – cos (Ө + Ө)]
        = (1/2)[1 – (cos2 Ө - sin2 Ө)] = (1/2)[1 – (cos2 Ө) + sin2 Ө]

Use identity: cos2 Ө = 1 - sin2 Ө
RHS = (1/2)[1 – (1 - sin2 Ө) + sin2 Ө]
        = (1/2)[1 – 1 + sin2 Ө + sin2 Ө]
        = (1/2)[2 sin2 Ө]
        = sin2 Ө = LHS

(ii)                cos2 Ө = (1/2)(cos 2Ө + 1)                  …Eqn (3)

RHS = (1/2)(cos 2Ө + 1) = (1/2)[cos (Ө + Ө) + 1]
        = (1/2)[(cos2 Ө - sin2 Ө) + 1] = (1/2)[1 + cos2 Ө – (sin2 Ө)]

Use identity: sin2 Ө = 1 - cos2 Ө
RHS = (1/2)[1 + cos2 Ө – (1 - cos2 Ө)]
        = (1/2)[1 + cos2 Ө – 1 + cos2 Ө]
        = (1/2)[2 cos2 Ө]
        = cos2 Ө = LHS

Given: f(Ө) = 1 + 10 sin2 Ө – 16 sin4 Ө                        …Eqn (4)

b)      To show: f(Ө) = 3 cos 2Ө – 2 cos 4Ө              …Eqn (5)

Fr. (4):             f(Ө) = 1 + 10 sin2 Ө – 16 sin4 Ө
                        f(Ө) = 1 + 2 sin2 Ө (5 – 8 sin2 Ө)
Use (2):            f(Ө) = 1 + 2 [(1/2)(1 – cos 2Ө)][5 – 8 ((1/2)(1 – cos 2Ө))
                        f(Ө) = 1 + (1 – cos 2Ө)[5 – 4(1 – cos 2Ө)]
                        f(Ө) = 1 + (1 – cos 2Ө)[5 – 4 + 4 cos 2Ө)]
                        f(Ө) = 1 + (1 – cos 2Ө)(1 + 4 cos 2Ө)
                        f(Ө) = 1 + (1 + 3 cos 2Ө - 4 cos2)
Use (3):            f(Ө) = 1 + [1 + 3 cos 2Ө - 4 ((1/2)(cos 4Ө + 1))]
                        f(Ө) = 1 + [1 + 3 cos 2Ө - 2(cos 4Ө + 1)]
                        f(Ө) = 1 + [1 + 3 cos 2Ө - 2cos 4Ө - 2]
                        f(Ө) = 1 + 1 + 3 cos 2Ө - 2cos 4Ө - 2
                        f(Ө) = 3 cos 2Ө – 2 cos 4Ө  (Shown Eqn 5 from Eqn 4)

c)      To solve, for 0 ≤ Ө ≤ 180:

1 + 10 sin2 Өo - 16 sin4 Өo + 2 cos 4Өo = 0.25            …Eqn (6)

Fr. (5):              2 cos 4Ө = 3 cos 2Ө – f(Ө)                             …Eqn (7)

Put (7) and (4) into (6): (by “double substitution”)
                                   
                                    f(Ө) + (3 cos 2Ө – f(Ө)) = 0.25
                                                            3 cos 2Ө = 0.25

                                                   cos 2Ө = (0.25/3)

Domain for 2Ө: 2 x 0 ≤ 2Ө ≤ 2 x 180 or  0 ≤ 2Ө ≤ 360

Since cos 2Ө is +ve:     2Ө is in 1st Qd or 4th Qd
                                    2Ө = cos-1 (0.25/3)      …1st Qd
                                     Ө = (1/2) cos-1 (0.25/3)
                                     Ө = 42.6099…
                                     Ө = 42.6 (1 dp)

                        Or,       2Ө = 360 - cos-1 (0.25/3)         …4th Qd
                                     Ө = (1/2) [360 - cos-1 (0.25/3)]
                                     Ө = (1/2) (274.78019..)
                                     Ө = 137.390…

                                     Ө = 137.4 (1 dp)

--------------------------------------------------------------------------