Translation

Friday, 27 December 2013

Answer to Addition Formulae Question 2

Edexcel Past-Year Question (Q10 P1, 28/5/2004)

2)                         sin(A + B) ≡ sin A cos B + cos A sin B

By expanding R sin(x + Ө),

(a)    Find, in degrees to 1 decimal place, the value of Ө such that

5 sin x + 12 cos x ≡ R sin(x + Ө)

Where R > 0, 0 < Ө < 90o and 0 < x < 360o.                                    (5)

(b)   Show that R = 13.                                                                                (2)
                                  
(c)    Write down the minimum value of 5 sin x + 12 cos x.                            (1)

(d)   Find, to 1 decimal place, the value of x which gives this minimum value. (2)

(e)    Solve the equation 5 sin x + 12 cos x = 8.                                            (4)


My Proposed Solutions

2 (a)     Expanding,       R sin(x + Ө) = R [sin x cos Ө + cos x sin Ө]
                                                         = R sin x cos Ө + R cos x sin Ө
                                                         ≡ 5 sin x + 12 cos x
            Comparing coefficients:   R cos Ө = 5                         …Eqn (1)
                                                  R sin Ө = 12                        …Eqn (2)
            (2) ÷ (1):                       (R sin Ө)/( R cos Ө) = tan Ө = 12/5
                                                  tan Ө = 2.4
            For domain 0 < Ө < 90oӨ = tan-1 2.4 = 67.38…o
       
            Answer: Ө = 67.4o (1 d.p.)      

2 (b)     Using eqn (1):    R = 5/cos Ө = 5/cos (tan-1 2.4) = 13 (Shown)

2 (c)     Since,               5 sin x + 12 cos x ≡ R sin(x + Ө)
            Implying:           Min. value occurs when R sin(x + Ө) is minimum, and
R sin(x + Ө) is minimum when sin(x + Ө) = - 1
            Therefore:         Min. value of 5 sin x + 12 cos x ≡ 13(-1) = - 13 (Answer)

2 (d)     To find x which gives the minimum value:
            Use:                             R sin(x + Ө) = - 13, where R = 13 and Ө = tan-1 2.4
                                                sin(x +  Ө) = - 1
            Domain for (x + Ө):      0 + 67.38…o < (x + Ө) < 360o + 67.38…o
            Therefore:                     (x + Ө) = sin-1(-1) = 270o
            Hence,                         x = 270o – Ө = 270o -  tan-1 2.4 = 202.61…o

            Answer: x = 202.6o (1 d.p.)
                       
2 (e)     To solve:                      5 sin x + 12 cos x = 8
            Use:                             R sin(x + Ө) = 8, where R = 13 and Ө = tan-1 2.4
            Therefore:                     sin(x + Ө) = 8/13
            Domain for (x + Ө):      0 + 67.38…o < (x + Ө) < 360o + 67.38…o
            Reference Angle, R:      R = sin-1 (8/13) = 37.97…o (< 67.38…o)
            Therefore,                    (x + Ө) = 180o - R (2nd Qd), or, = 360o + R (5th Qd)
            Hence,                         x = 180o – R – Ө         or, = 360o + R - Ө
Thus,                            x = 180o - sin-1 (8/13) - tan-1 2.4 = 74.63…o
                                         or,  x = 360o + sin-1 (8/13) - tan-1 2.4 = 330.59…o
           

Answer: x = 74.6o or 330.6o (1 d.p.)


No comments: