Translation

Friday, 22 November 2013

SPM 2013 Paper 2 Q 4 on Trigonometry:

Q 4(a) involves using identities (including addition or double-angle formulae) to prove a given equation; while
Q 4(b) involves solving the proven trigonometric equation based on sound understanding of Reference Angle, Principle Angles and their Co-terminal Angles (for Principle Angles) up to 720 degrees. 

Remarks: Even if a candidate can't prove (the equation given in) part (a), he or she should proceed to solve part (b) as if the given equation is proven: Part (a) carries 2% marks while Part (b) carries 4% marks.

-----------------------------------------------------------------------
SPM 2013 Paper2 (3472/2) Q4:

4.         (a) Prove that tan x sin 2x = 1 – cos 2x             (2)

            (b) Hence, solve the equation
tan x sin 2x = ¼, for 0o ≤ x ≤ 360o                    (4)

My Proposed Solutions

4          (a) To prove: tan x sin 2x = 1 – cos 2x

                        LHS = tan x sin 2x

                        Use identities (for 'double substitutions'):
                        tan x = sin x / cos x; and
                        sin 2x = 2 sin x cos x

                        LHS = (sin x / cos x)( 2 sin x cos x) = 2 sin2 x

                        Use identities:
cos 2x = 1 - 2 sin2 x; or,
2 sin2x = 1 – cos 2x

Therefore,
LHS = 2 sin2x = 1 – cos 2x = RHS (Proven)

            (b) Hence, tan x sin 2x = ¼, for 0o ≤ x ≤ 360o

                        Imply: 1 – cos 2x = ¼, for 0o ≤ 2x ≤ 720o
                                    cos 2x = 1 – ¼ = ¾ (+ve)
                       
Thus, for domain of 2x: 0o ≤ 2x ≤ 720o, 2xo must be in

·        1st Quadrant:

P1 = 2xo = Reference Angle (R) = cos-1 (3/4)
xo = (1/2)[cos-1 (3/4)] = 20.70481106…o
x = 20.7 (to 1 dp); or

(1st Qd 1st co-terminal angle)
2x = 360(1) + P1 = 360 + cos-1 (3/4)
x = (1/2)[360 + cos-1 (3/4)] =  200.7048111…
   = 200.7 (to 1 dp)

·        4th Quadrant:

P2 = 2xo = 360o – R = 360o – cos-1 (3/4)
xo = (1/2)[ 360o  - cos-1 (3/4)] = 159.2951889…o
x = 159.3 (to 1 dp); or

(4th Qd 1st co-terminal angle)


2xo = 360o + P2 = 360o + [360o – cos-1 (3/4)]
xo = (1/2)[720o – cos-1 (3/4)]
x = 339.2951889

x = 339.3 (to 1 dp)

---------------------------------------

Thursday, 21 November 2013

Questions on Logarithmic Functions and Indices


1.            Solve the following equations:

a)      i) 32x = 1000             (Cambridge IGCSE A-Maths 0606/23, May/June 2012 P2 Q5)

      ii) 362y-5/63y = 62y-1/216y+6 

b)      4x / 25-x = 24x / 8x-3   (IGCSE Q)

c)      3x+1 + 32-x = 28    (IGCSE Q)

d)      23x = 8 + 23x – 1   (SPM 2011 P1 Q7 @ pg 162)

e)      3x + 2 – 3x = 8/9    (SPM 2010 P1 Q7 @ pg 136)

f)        162x-3 = 84x            (SPM 2008 P1 Q7 @ pg 83)

g)      9(3n – 1) = 27n      (SPM 2007 P1 Q8 @ pg 58)

h)      3n – 3 x 27n =243   (SPM 2009 P1 Q7 @ pg 110)

i)        2x + 4 – 2x + 3 = 1   (SPM 2005 P1 Q7 @ pg 5)

j)        82x-3 = 1/√(4x + 2)  (SPM 2006 P1 Q6 @ pg 31)

k)      27(32x + 4) = 1     (SPM 2012 P1 Q7 @ pg 187)


2.      (i)  Write 125 = 53 as a logarithmic equation

(ii) Express logb32 = 5 in index form

 (iii) Evaluate:

(a)      blogbx 

(b)     10lg10

(c)      eln x for x = 3                                   


3.      For each of the following equations, sketch on separate axes its graph, showing clearly where the graph crosses the axis:

a)      y = ex                                                                           (2)

b)      y = log3 x                                                                      (2)

c)      y = 2-x                                                                          (2)

d)      y = log3 (-x)                                                                  (2)

                                      
4.      Solve the equations:

a)      logx 128 = 7                                                                 (2)

b)      log5 (7x -1) = 3                                                            (3)

c)      log4 t = 6 logt 16 -1                                                      (5)


5.      Solve

(a)   logq 343 = 3                                                                             (2)

(b)   log4 (5n + 9) = 3                                                                       (3)

(c)   logm 4 + 8 log4 m = 6                                                                (6)

(d)   2 log3 x – 3x log3 x + 6x = 4                                                     (5)


6.      Solve

(a) logx 125 = 3                                                                             (2)

(b) log4 (9y + 4) = 4                                                                       (3)

(c) 3 – logp p = logp 9                                                                     (6)



7.      Given that f(x) = log5 3 + log5 6 + log5 9 + log5 12 + log5 15

a)      Show that f(x) = 6 log5 3 + 3 log5 2 + 1                        (3)

b)      Solve f(x) = 1 + log5 x + log5 x2                                    (3)


8.      a) Given that log8 7 = m log2 7, find the value of m.                          (2)

      b) f(x) = 16x log9 10 – 12 log9 10 + 4x log3 x – 3 log3 x

i)        Factorise f(x) completely                                                     (3)

ii)   Hence, solve f(x) = 0                                                          (3)



9.       Solve the simultaneous equations:                                                  

(a)    2 log3 x + 3 log5 y = 7

                                 log3 x – log5 y = 1                                                (4)


(b)   (Given that p ≠ q):  logp q + 3 logq p = 4
                                          pq = 81                        (5)


(c)    3 log2 x + 4 log3 y = 10

   log2 x – log3 y = 1                                                (6)


10.  Solve:         (a) logq 5 + 6 log5 q = 5                                                (4)

                  (b) log3 (5x + 12) + log3 x = 2                                      (5)


11.  Given that log9 10 = k log3 10,

(a)   find the value of k.                                                                     (2)

      (b) Factorise completely

                                    4x log3 x – 3 log3 x + 16x log9 10 – 12 log9 10  (2)

(c)   Hence, solve the equation                                                          (5)

                        4x log3 x – 3 log3 x + 16x log9 10 – 12 log9 10 = 0       

                       
12.    Solve

(a)    logp 343 = 3                                                                (2)

(b)   log6(11q – 4) = 3                                                                     (2)

(c)    9 logr 3 = log3 r                                                                        (3)

(d)   Show that                                                                                (3)

           log5 3 + log5 6 + log5 9 + log5 12 + log5 +15 = 6 log5 3 + 3 log5 2 + 1

(e)    Solve the equation                                                                   (3)

           log5 3 + log5 6 + log5 9 + log5 12 + log5 +15 = 1 + log5 x + log5 x2



13.    (a) Solve the equations

(i)                  logx 343 = 3                                                              (2)

(ii)                log9(4y – 3) = 2                                                         (2)

(b)   Solve, to 3 significant figures, logq 5 + 6 log5 q = 5        (5)

(c)    Show that x log2 x5 – log2 x2 ≡ (5x – 2) log2 x.               (2)

(d)   Hence solve the equation x log2 x5 – log2 x2 = 20x – 8   (4)


                                                           
14.    (a) Solve the equations log4 2 = p                                       (1)

Given that log2 3 = k log4 3

(b)   find the value of k                                                                   (2)

(d)      Show that                                                                               (4)

     5x log4 x – 2 log4 x – 10x log2 3 + 4 log2 3 = log4 (x5x – 2/320x – 8)

(e)      Hence solve the equation                                                        (4)

5x log4 x – 2 log4 x – 10x log2 3 + 4 log2 3 = 0


15.    Solve

(a)    logq 343 = 3                                                    (2)

(b)   log4(5n + 9) = 3                                               (3)

(c)    logm 4 + 8 log4 m = 6                                       (6)

(d)   2 log3 x - 3x log3 x + 6x = 4                             (5)


16.  Solve

(a)      logp 243 = 5                                                               (2)

(b)      log4 (3q + 4) = 3                                                        (2)



f(x) = 2x logx 3 – 5 logx 9 – x + 5

(c)      Find the value of a and the value of b so that
         
          f(x) = (x – 5)(a logx 3 – b)                                (3)

(d)      Hence solve the equation f(x) = 0                                (3)


17.    (a) Solve the equations

(i)                  log5 625 = x                                                              (2)

(ii)                log3(5y + 3) = 5                                                         (2)

(b)   (i)       Factorise          5x ln x + 3 ln x – 10x – 6                     

(ii)      Hence find the exact solution of the equation

5x ln x + 3 ln x – 10x – 6 = 0                            (5)


----------------------------------END-------------------------------

P/S: If You Need Help In Physics, Chemistry, Add-Maths and/or O-Maths (IGCSE Yr 10/11 or SPM or CIE AS/A2 Chemistry 9701)

Help is Available in or around Petaling Jaya, Selangor:
1) Just email tutortan1@gmail.com; or WhatsApp018-3722 482. Act early to avoid disappointment! Currently in May 2016, existing students are about to finish their Summer exams. Their slots are up for grab starting now! All slots are normally taken up by end-June. Act now to avoid disappointment!

2) Those far-away can follow my student-friendly blog(s) for free. :).

-----------------------------------------------------------

Tuesday, 19 November 2013

Simultaneous Equations - Edexcel Past-Year Questions

Simultaneous Equations – Past-Year Questions:

1.        Solve the simultaneous equations

3x + y = 1

   x2 + 3xy + y2 = 5                                     (6)                    …24/03/2004, P1, Q4

____________________________________________________________________
.
2.        Solve the simultaneous equations

                    2x2 + 9xy + 9y2 = 0

                    3x + 3y = 2                                          (6)                    …27/05/2004, P1, Q2

_____________________________________________________________________

3.        Solve the simultaneous equations

             y = x2 – 7x + 10

             x – y + 3 = 0                                              (5)                    …26/01/2005, P1, Q3

_____________________________________________________________________

4.        Solve the equations

y – 2x = 5

     2x2 + 2xy + y2 = 5                                (6)                    …25/05/2005, P1, Q2

---------------------------------------------------------------------------------------------------

5.        Solve the equations

                        x2 + 4x – xy = 10

                 2x – y = 3                                            (6)            …24/05/2006, P1, Q1

_____________________________________________________________________

6.        Find the coordinates of the points of intersection of the curve with equation y = 3x2 – 4x + 2 and the line with equation 7x + y = 8.        (5)                 …19/01/2007, P1, Q3

_____________________________________________________________________


7.        (a)  Find the coordinates of the points where the line with equation y = 3x + 3 intersects the
       curve with equation y = x2 + x – 12.                                                                  (5)

(b)   Find the set of values of x for which x2 + x – 12 ≥ 3x + 3.                                 (2)

                                                                                                  …17/5/2007, P2, Q4

_____________________________________________________________________

8.        Find the coordinates of the points of intersection of the curve with equation y = x2 – 8x + 11 and the line with the equation x + y = 5.         (5)         …12/5/2008, P1, Q2

_____________________________________________________________________

9.         Solve the equations

x – 2y = 3

     2y2 + 2xy + x2 = 1                                (6)                       …13/5/2010, P1, Q3

_____________________________________________________________________

10.    Solve the equations

    xy = 6

     xy + x + y = 11                                    (6)                          …15/12010, P1, Q4

_____________________________________________________________________

11.    Find the coordinates of the points where the line with equation y = 2x - 5 meets the
curve with the equation xy = 12.                 (5)                                …14/5/2009, P2, Q11            
_____________________________________________________________________

12.    The grid opposite shows the graph of y = 3x – 4 + 6/x2

The line with equation y = 5x – 4 intersects the curve with equation y = 3x – 4 + 6/x2

(a)    Using algebra, show that the x-coordinate of P satisfies x3 = 3.          (3)

(b)   By drawing a suitable straight line on the grid, obtain an estimate, to 1 decimal place, for the value of 31/3                                                                                                                                       
                                                                                                           (13/05/2010, P1, Q1)
                                                                                (+ many more such questions)
                                                                                             

-----------------------------------END------------------------------------------



Monday, 18 November 2013

Trigonometric Equations Involving Addition Formula

Solving Trigonometric Equations Involving Addition Formula

 Q1) Using cos(A + B) ≡ cos A cos B – sin A sin B,

(a)    show that
(i)    sin2 Ө = (1/2)(1 – cos 2Ө),
(ii)   cos2 Ө = (1/2)(cos 2Ө + 1)                                                            (4)

f(Ө) = 1 + 10 sin2 Ө - 16 sin4 Ө .

(b)   Show that f(Ө) = 3 cos 2Ө – 2 cos 4Ө.                                               (4)

(c)    Solve the equation

1 + 10 sin2 Өo - 16 sin4 Өo + 2 cos 4Өo = 0.25, for 0 ≤ Ө ≤ 180

             giving your solutions to 1 decimal place.                                       (4)  

--------------------------------------------------------------------------------

Possible Solutions:

Given: cos (A + B) ≡ cos A cos B – sin A sin B            …Eqn (1)

a)      To show:
(i)                  sin2 Ө = (1/2)(1 – cos 2Ө)                    …Eqn (2)

RHS = (1/2)(1 – cos 2Ө) = (1/2)[1 – cos (Ө + Ө)]
        = (1/2)[1 – (cos2 Ө - sin2 Ө)] = (1/2)[1 – (cos2 Ө) + sin2 Ө]

Use identity: cos2 Ө = 1 - sin2 Ө
RHS = (1/2)[1 – (1 - sin2 Ө) + sin2 Ө]
        = (1/2)[1 – 1 + sin2 Ө + sin2 Ө]
        = (1/2)[2 sin2 Ө]
        = sin2 Ө = LHS

(ii)                cos2 Ө = (1/2)(cos 2Ө + 1)                  …Eqn (3)

RHS = (1/2)(cos 2Ө + 1) = (1/2)[cos (Ө + Ө) + 1]
        = (1/2)[(cos2 Ө - sin2 Ө) + 1] = (1/2)[1 + cos2 Ө – (sin2 Ө)]

Use identity: sin2 Ө = 1 - cos2 Ө
RHS = (1/2)[1 + cos2 Ө – (1 - cos2 Ө)]
        = (1/2)[1 + cos2 Ө – 1 + cos2 Ө]
        = (1/2)[2 cos2 Ө]
        = cos2 Ө = LHS

Given: f(Ө) = 1 + 10 sin2 Ө – 16 sin4 Ө                        …Eqn (4)

b)      To show: f(Ө) = 3 cos 2Ө – 2 cos 4Ө              …Eqn (5)

Fr. (4):             f(Ө) = 1 + 10 sin2 Ө – 16 sin4 Ө
                        f(Ө) = 1 + 2 sin2 Ө (5 – 8 sin2 Ө)
Use (2):            f(Ө) = 1 + 2 [(1/2)(1 – cos 2Ө)][5 – 8 ((1/2)(1 – cos 2Ө))
                        f(Ө) = 1 + (1 – cos 2Ө)[5 – 4(1 – cos 2Ө)]
                        f(Ө) = 1 + (1 – cos 2Ө)[5 – 4 + 4 cos 2Ө)]
                        f(Ө) = 1 + (1 – cos 2Ө)(1 + 4 cos 2Ө)
                        f(Ө) = 1 + (1 + 3 cos 2Ө - 4 cos2)
Use (3):            f(Ө) = 1 + [1 + 3 cos 2Ө - 4 ((1/2)(cos 4Ө + 1))]
                        f(Ө) = 1 + [1 + 3 cos 2Ө - 2(cos 4Ө + 1)]
                        f(Ө) = 1 + [1 + 3 cos 2Ө - 2cos 4Ө - 2]
                        f(Ө) = 1 + 1 + 3 cos 2Ө - 2cos 4Ө - 2
                        f(Ө) = 3 cos 2Ө – 2 cos 4Ө  (Shown Eqn 5 from Eqn 4)

c)      To solve, for 0 ≤ Ө ≤ 180:

1 + 10 sin2 Өo - 16 sin4 Өo + 2 cos 4Өo = 0.25            …Eqn (6)

Fr. (5):              2 cos 4Ө = 3 cos 2Ө – f(Ө)                             …Eqn (7)

Put (7) and (4) into (6): (by “double substitution”)
                                   
                                    f(Ө) + (3 cos 2Ө – f(Ө)) = 0.25
                                                            3 cos 2Ө = 0.25

                                                   cos 2Ө = (0.25/3)

Domain for 2Ө: 2 x 0 ≤ 2Ө ≤ 2 x 180 or  0 ≤ 2Ө ≤ 360

Since cos 2Ө is +ve:     2Ө is in 1st Qd or 4th Qd
                                    2Ө = cos-1 (0.25/3)      …1st Qd
                                     Ө = (1/2) cos-1 (0.25/3)
                                     Ө = 42.6099…
                                     Ө = 42.6 (1 dp)

                        Or,       2Ө = 360 - cos-1 (0.25/3)         …4th Qd
                                     Ө = (1/2) [360 - cos-1 (0.25/3)]
                                     Ө = (1/2) (274.78019..)
                                     Ө = 137.390…

                                     Ө = 137.4 (1 dp)

--------------------------------------------------------------------------